@ Telescope

Free version 1.0.0

I. About the solution
Telescope is a tool for remote browsing of objects in a .NET (C#, VB.NET, ...) application you have
developed. The main purpose for its creation is to give developers a the possibility of checking objects’
states without the necessity of having to stop the run. This will allow developers to increase agility of
their design process and to find and fix bugs in software quickly, which in turn will make the applications
more robust, easy to use and reliable.

Il. License

The basic version of Telescope 1.0.0 is distributed without a license, which means you have the right to
use it without restriction for personal, educational or business purposes.

lll. Installation
The installer file Telescope.msi deploys a set of files which are necessary in order to use Telescope on
your machine. The list of files contains Telescope.exe, which aggregates data from nodes, assembly
TelescopeNode.dll (see detailed description below) and current instruction. To delete Telescope from
your computer execute the ‘uninstall’ function from Control Panel: Control Panel\Programs\Programs
and Features

IV. Using Telescope
TelescopeNode.dll is an assembly responsible for reflecting information about state of objects inside
your .NET application.
Telescope.exe is a program responsible for aggregation of data from nodes in your applications and
displaying data in browser.
It is compatible with .NET 4.0 and higher.
To make binding to state of object you want to track in runtime, one should create instance of
Telescope. TelescopeNode (node), passing reference to object as parameter in constructor. Other

constructor parameters are name of the node and name object as they are displayed in browser.

An example of such a binding is depicted below:

-Inamespace TestTelescopeConsole

1
- class Program
1

- static veid Main(string[] args)

{

Telescope.TelescopelNode n = new Telescope.TelescopeNode(new TestObject(), "NoName™, “"NoObjectName™);

Conscle.ReadLline();

+ public class TestObject]..]
+ public class InnerObjl.. .|

+ public struct Str

In case of binding to visual objects inside the WPF application (they can be accessed from window
thread only), reference to System.Windows.Threading.Dispatcher object should be used as an additional
parameter of node constructor. In this case, the corresponding code code appears as depicted in the

next picture below:
—-Inamespace TestWPFApplication

1
- A7 <summary:
'/ Interaction logic for MainWindow.xaml
A </ summary >
- public partial class MainWindow : Window
1
= public MainWindow()
1
InitializeComponent();
¥
Telescope.Telescopelode node;
= private woid Window_Loaded(cbject sender, RoutedEventhrgs e)
1
Dispatcher.Invoke(new Action(() =>
1
node = new Telescope.Telescopelode(this, "ExampleNode™, “ExampleObject™, Dispatcher);
), nully;
¥
h
h

After you start your application, the created instance of Telescope.TelescopeNode will have access to
the object to which it is bound and can transmit data to Telescope program. Telescope is capable of
processing http requests it receives from the browser, and then sending valid html code with object
data in response.

Telescope uses either the port you set in the configuration file TelescopeConfig.cfg (or port 20000 by
default). This configuration file should be located in <Telescope folder>\config folder. Instance of
Telescope. TelescopeNode stays inactive until Telescope sends it command to start the operation.
Telescope. TelescopeNode sends requests to Telescope using port number set in configuration file

TelescopeNodeConfig.cfg (or 20000 by default), which should be located in <Your application

folder>\config. When the node connects Telescope, it dynamically assigns the port number to the node.

The range of port numbers for nodes is set TelescopeConfig.cfg and is 20001-21000 by default.

If your browser and Telescope are located on the same computer, then the request you may use to

browse your objects is http://localhost:20000/

Here is an example of how the objects are displayed in your browser:

E Opera | [Telescope x | +

R C = | ® | localhost:20000

e TELESCOPE

Observed data

Name
- ¥ ExampleNode
= 4} ExampleObject
(¥ Taskbarlteminfo
(¥ AllowsTransparency
(3 Title
(¥ Icon

- 4 SizeToContent

@ value__

& Top

o Left
+ 4 RestoreBounds

+ {J WindowStartupLocation

¥ ShowlInTaskbar

Value

ONLINE
TestWPFApplication.MainWindow
null

False

MainWindow

null

Manual

i}

130

130
130.130.525,350
Manual

True

Type

TestWPFApplication.MainVWindow
System.Windows.Shell. Taskbarlteminfo
System_Boolean

System_String
System.Windows.Media.ImageSource
System.Windows.SizeToContent

System.Int32

System_Double
System_Double

System.Windows.Rect
System.Windows.WindowStartupLocation

System.Boolean

http://localhost:20000/

— - O
H Opera || I Telescape x | + = 2

+ C = ® | localhost:20000 —r=
@ TELESCOPE

Observed data

Name Value Type
- w NoName ONLINE
- {3 NoObjectName TestTelescopeConsole. TestObject TestTelescopeConsole. TestObject
- . somelntData System.Int32[] System.Int32(]
{¥ Length 1000 System.Int32
¥ LongLength 1000 System.Int64
i3 Rank 1 System.Int32
+ % SyncRaot System Int32(] System Int32(]
¥ IsReadOnly False System.Boolean
i+ IsFixedSize True System.Boolean
L3 IsSynchronized False System_Boolean
— & collection System.Int32[] System Int32[]
@0 0 System.Int32
[yl 1 System.Int32
o2 2 System.Int32 “

Telescope displays a tree of public properties and fields of the objects. In the basic version, the maximal
depth of the tree is limited and equals 5.

- depicts root of displayed node

- depicts root object or property of the object
‘ - depicts field of the object

_j:j - depicts root of a collection

In case of loss of connection between node and Telescope program (for example, your application has
been stopped) the node is marked as OFFLINE. An example of such a node is shown below:

W open [Telescape £3 | + = = &

« @ s ® | localhostz0000 v @

@ TELESCOPE

Observed data

Name Value Type
+ ¥ ExampleNode ONLINE

W¥ PORT: 20002 OFFLINE

V. Examples
Let’s consider the use of Telescope in a simple console program. Below are the step-by-step instructions

for creating the application with TelescopeNode.

1. Create new console project in Visual Studio

o

File Edit Wiew GitExt Debug Teamn Data
Mew
Open
Close

Close Solution

A Save Selected ltems Ctrl+5

MNew Project

MET Framework 4 ¥ | Sort by: | Default

E‘c# Windows Forms Application
& WeF Application

_E'Eﬁl Console Application

Class Library

ASP.MET Web Application

Start Page - Micro

Tools Architecture Test Analyze Window Help
* | a] Project. Ctrl+Shift+ N
* | '@ WebSite.. Shift+Alt+N
Lt Team Project...
0 File. Ctrl+M

Project From Existing Code...

» IE

A

Search Installed Templates

Visual C2

Visual C2

Visual C2

Visual C2

Visual C2

Type: Visual C#

A project for creating a command-line
application

2. Copy TelescopeNode.dll from Telescope installation folder to your application folder (by default

it is: %ProgramFiles%\Flussig\Telescope 1.0.0)

SR Telescope 1.0.0
Hame Share View
.:(__-) * 1 ;v ThisPC » MewVolume (C) » Program Files (x86) » Fussig » Telescope 1.0.0 »
¢ Favorites MName Date moedified Type Size
B Desktop | config 107277201 File folder
4 Downloads) lib 10727200 File folder
= Recent places @ Telescope.exe 10/25/2015 Application 3,053 KB
@) Creative Cloud Files %) TelescopeMNode.dll 10/25/20159:14 AM Application extens... 165 KB
%] TelescopeService.dll 10/25/2015 914 AM Application extens... 203 KB

R ANE TestTelescope

-

Home Share View

@ = T . » ThisPC » Documents » Visual Studio 2010 » Projects » TestTelescope » TestTelescope » TestTelescope »
' Favorites MName : Date modified Type Size

B Desktop | bin 10/27/2015 322 PM File folder
& Downloads . ohj 0/27/2015 222 PM File folder
=l Recent places . Properties 10/27/2015 322 PM File folder

@) Creative Cloud Files] Program.cs 10/27/2015 222 PM Visual C# Source f... 1KE

| %) TelescopeMNode.dll 10/25/2015 %14 AM Application extens... 165 KB

& OneDrive |=| TestTelescope.csproj 10/27/2015 3:22 PM - CSPRO File IKE

3. Add reference to TelescopeNode.dll

Solution Explorer
-
m Solution 'TestTelescope' (1 project)
4 | TestTelescope
[» [=d| Properties
Add Reference...
Add Service Reference...
A System.Lore
3 Systern.Data
<3 Systern.Data.DataSetExtensions
<3 Systern.Xml
<3 Systern.Xml.Ling
“#] Program.cs

05

ydg wonn|o

13U

o
m
[=1]
=3
m
=

- PN

IJd u

sapade

.NET | COM | Projects | Browse |Recent

Look in: . TestTelescope W G ? i v
Name ‘ Date modified Type Size
. bin 10/27/2015 322 PM File folder
. config 10/27/2015 3:32 PM File folder
. ohbj 10/27/2015 322 PM File folder
. Properties 10/27/2015 3:.22 PM File folder
|%| TelescopeNode.dIl 10/25/2013 914 AM Application extens... 163 KB

File description: ReflectorModeService
Company: Microsof

File version: 1
Date created:

/2772015 231 PM

Size: 164 KB
File name: TelescopeNode di v
Fles of type: | Compaonent Files (*.dll;*tlb;" olb;* ocx;” exe:” manifest) L

4. Define objects you want to browse during runtime and make instance of TelescopeNode to

make binding to them
-Inamespace TestTelescope

1
= class Program
1
= static wvoid Main(string[] args)
1
MyClass mc = new MyClass();
Telescope.Telescopelode node = new Telescope.Telescopelode(mc, "My node™, "mc");
CcnsclE.ReadLinE{)ﬂ
¥
I
= public class MyClass
1
+ public My(lass{}[:]
public int MyNumber { get; set; }
public DateTime MyTime { get { return DateTime.Now; } }
¥
}

5. Compile the project

6. (Optional) Create configuration file for node TelescopeNodeConfig.cfg located in
<TargetDir>\config. This file contains information about the Telescope port number. An example
of such a file can be found in <Telescope installation folder>\config.

7. Run Telescope.exe (run as Administrator)

oo Add Reference ?

8. Runyour application (run as Administrator)

9. Enter your browser and go to http://localhost:<Telescope port number>. Using default settings
it should read: http://localhost:20000/

10. Browser displays information about your objects. For example:

H Opera || I Telescope x |+ = -0
*« C & | ® localhost20000 9 Q@
Name Value Type
- @ My node ONLINE
- & me TesiTelescope MyClass TesiTelescope MyClass
{3 MyNumber 123 System.Int32
+ {3 MyTime 27.10.2015 15:41:17.880 System.DateTime

VI. How it works

The Telescope program collects information it gets from nodes located in your applications. When you
make a request from the browser it sends requests to nodes. These gain information about your objects
using System.Reflection namespace and send it back to Telescope. Telescope then gathers it together
and wraps it in html response for the browser. These processes are depicted on the following scheme:

Node Node
®
Qs
Sm®
o
e
S,
p —
I cpenn - olIEN
B Teescope x | + =
« C = O loclhost2 v Q@
*: TELESCOPE
Name Value Type
= ¥ ExampleNode ONLINE
= & ExampleObject Testwes l\"\pllf anon Mainanaow TestwWer l\p[\llf anon Mainwnaow
& Taskbariteminfo nu System VWAnaows Shell Taskbariieminto
o False System_Boolean v
>

http://localhost:%3cTelescope_port_number
http://localhost:20000/

When you start your application with TelescopeNode.dll embedded in it, the node is not active; it
cannot send messages until it connects Telescope. After connection, Telescope passes the port number
to the node and then starts the service using this number. After that the node does become active and is
able to obtain information about the object contained in the memory of your application. The
interaction between node (TelescopeNode.dll) and aggregator (Telescope.exe) can be summarized as:

Telescope.exe TelescopeNode.dll

|
|
|
|
|
Ping ?Program start
Start service on port xxx

J)Service start
Ping

OK

Get info

Info

F 3

VII. Performance

TelescopeNode.dll receives data in a separate thread and does not use the cpu resources of your
application. Telescope requires certain amount of memory for the temporary storage of the messages
that are transmitted between TelescopeNode and Telescope. We plan to descrease this memory usage
in future versions of our solution.

